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Combinatorial optimization by iterative partial transcription

A. Möbius,1,* B. Freisleben,2 P. Merz,2 and M. Schreiber3
1Institut für Festkörper- und Werkstofforschung, D-01171 Dresden, Germany

2Fachbereich Elektrotechnik und Informatik, Universita¨t-Gesamthochschule, D-57068 Siegen, Germany
3Institut für Physik, Technische Universita¨t, D-09107 Chemnitz, Germany
~Received 27 April 1998; revised manuscript received 24 November 1998!

A procedure is presented that considerably improves the performance of local search based heuristic algo-
rithms for combinatorial optimization problems. It increases the average ‘‘gain’’ of the individual local
searches by merging pairs of solutions: certain parts of either solution are transcribed by the related parts of the
respective other solution, corresponding to flipping clusters of a spin glass. This iterative partial transcription
acts as a local search in the subspace spanned by the differing components of both solutions. Embedding it in
the simple multistart-local-search algorithm and in the thermal-cycling method, we demonstrate its effective-
ness for several instances of the traveling salesman problem. The obtained results indicate that, for this task,
such approaches are far superior to simulated annealing.@S1063-651X~99!03904-5#

PACS number~s!: 02.70.Lq, 02.60.Pn
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I. INTRODUCTION

Combinatorial optimization problems occur in man
fields of physics, engineering, and economics. They
closely related to statistical physics, see, e.g.,@1,2# and ref-
erences therein. Many of the combinatorial optimizati
problems are difficult to solve since they are NP-hard, i
there is no algorithm known that finds the exact solution w
an effort proportional to any power of the problem size. O
of the most popular such tasks is the traveling salesm
problem~TSP!: how to find the shortest round-trip through
given set of cities. For recent surveys on various approac
to the TSP see@3,4#.

Many combinatorial optimization problems are of cons
erable practical importance. Thus, algorithms are needed
yield good approximations of the exact solution within
reasonable computing time, and which require only a mod
effort in programming. Various deterministic and probabil
tic approaches, so-called search heuristics, have been
posed to construct such approximation algorithms. A con
erable part of them borrows ideas from physics and biolo

The conceptionally simplest approximation algorithms
local searchprocedures. They can be best understood w
interpreting the approximate solutions as discrete po
~states! in a high-dimensional hilly landscape, and the qua
tity to be optimized as the corresponding potential ener
These algorithms proceed iteratively, improving the solut
by small modifications~moves! step by step: The neighbor
hood of the current state, defined by the set of permit
modifications of the solution~move class!, is searched for
states of lower energy. If such a state is found, it is sub
tuted for the current state, and a new search is started.
erwise, the process stops because a local minimum has
reached.

Usually, the chances to find the global minimum in th
way—or in the case of multimodality~degeneracy!, one of
the global minima—vanish exponentially as the problem s
rises. They can be increased by taking moves of higher c
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plexity into account. Physically speaking, by means of
local search we create states that are only metastable
degree of metastability is defined by the move class con
ered. Thus, according to increasing complexity of the mov
one can define hierarchies of classes of metastable st
Considering more complex moves corresponds to wait
longer relaxation times, so that, on the average, one end
in lower local minima.

The local search concept is simple. However, in sophi
cated algorithms, the moves considered can be fairly com
cated, i.e., they may concern a rather large number of
grees of freedom as in the Lin-Kernighan algorithm for t
TSP @5#. The art of developing such algorithms is to sele
from the set of all possible modifications, related to a giv
number of degrees of freedom, an appropriate small par
be included into the move class.

In order to overcome barriers between local minim
simulated annealing~SA! @6,7# assumes the ‘‘sample’’~cur-
rent approximate solution! to be in contact with a heat bat
with a time dependent temperature. Thus, moves increa
the energy are also taken into account, where the accept
probability decreases exponentially with increasing ene
change. Slow cooling permits the ‘‘sample’’ to reach a p
ticularly deep local minimum.

Several proposals have been made to improve this b
concept, in particular to optimize the temperature schedul
the annealing process, see e.g.,@8–13# and references
therein, or to adapt SA to parallel computer architectu
@14–17#. Moreover, substituting the random decision of a
cepting energy increasing moves by a deterministic decis
according to whether or not the energy change exceed
certain upper bound, one getsthreshold accepting, a closely
related concept@18#. Finally, replacing the slow cooling o
SA by thermal cycling, i.e., by cyclically heating and
quenching with decreasing amplitude, can considerably
prove the performance@19#; for an early approach based o
cyclically heating~with the temperature chosen at random!
and rapid cooling see@20#.

Genetic algorithms@21,22# offer another possibility to es
cape from local minima. They simulate a biological evol
tion process by operating on a population of individuals~ap-
4667 ©1999 The American Physical Society
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proximate solutions!, where new generations are produc
through the repeated application of genetic operators suc
selection, crossover and mutation. Particularly effect
seem to be algorithms in which the individuals are lo
minima, see@23–27# and references therein. However,
guarantee to find the global optimum within any finite co
puting time cannot be given by this approach, nor by a
other of the heuristic methods mentioned, though, for infin
computing time, the convergence of SA~with a logarithmic
temperature schedule! and of a broad class of evolutionar
algorithms has been proved@28,29#.

At the same time, exact solution methods have been
veloped further. They are mainly based on branch-and-bo
and branch-and-cut ideas@30,31#. Thus, a specific TSP in
stance including 7397 cities was solved@3,32#. However, for
a fixed size, the effort necessary to find the exact solution
vary enormously from problem to problem. For example,
TSPLIB95 library @32# includes an instance of 1577 cities th
could only very recently be solved by Applegate and c
workers; they needed approximately 280 hours on a D
Alphastation 4100 5/400@33#.

In this paper, we presentiterative partial transcription
~IPT!, an approach to improve the performance of heuris
algorithms for combinatorial optimization problems: IP
compares pairs of states, represented by vectors of co
nates. In an iterative procedure, it systematically searche
the subsets of the components of these vectors, the cop
of which from one vector to the other yields new appro
mate solutions with decreased energy. IPT is particula
useful when applied to local minima. We illustrate its ef
ciency for the TSP, demonstrating that the incorporation
IPT into local search based heuristic algorithms can con
erably increase their performance.

The paper is organized as follows: In Sec. II, we pres
the IPT procedure in a general manner, as well as applie
the TSP. Section III is devoted to embedding IPT in mu
start local search and in thermal cycling. Section IV repo
on the results obtained for several instances of the trave
salesman problem. Finally, Sec. V summarizes the pape

II. ITERATIVE PARTIAL TRANSCRIPTION

A. General formulation

The design of the optimization method proposed here
motivated by the use of local search algorithms common
three highly effective Monte Carlo optimization procedure
the iterated Lin-Kernighanmethod for the TSP@3,34,35#, the
thermal-cyclingapproach@19#, and thegenetic-local-search
strategy@24–27#. The efficiency of these approaches in fin
ing states of particularly low energy rests on the consid
ation of local minima rather than of arbitrary states, and
modifying the local minima by sophisticated operation
These operations typically involve elaborate manipulat
steps, and in some cases they make use of other l
minima. Compared to SA, a single such modification co
cerns a rather large number of degrees of freedom.
course, it demands far more CPU time than a single M
tropolis step in SA. The idea of our proposal is to increa
the average ‘‘gain’’ of the individual local searches by a fa
postprocessing phase, and consequently to reduce the
age number of local search steps required to reach a ce
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energy. This is achieved by making good use of the inform
tion inherent in the transformation mapping one to the ot
local minimum.

In detail, consider two statesv1 andv2 ~possible approxi-
mate solutions of the given optimization problem!, encoded
as two vectors, which differ ink components. We look for
decompositions of the transformationM mappingv1 to v2
into a product of two commuting transformationsMa and
Mb ,

v25M ~v1!5Mb„Ma~v1!…5Ma„Mb~v1!…, ~1!

such thatMa(v1) andMb(v1) are possible approximate so
lutions of the optimization problem too, and thatMa andMb
modify disjunct sets ofka andkb components ofv1 . Thus,
ka1kb5k, so that bothMa andMb ‘‘transcribe’’ part of the
components ofv1 by the values of these components inv2 .

The procedure proposed here is an iterative search
appropriate transformations of this kind. It merges two sta
v1 andv2 : According to increasingka , where 1<ka<k, it
systematically searches for pairs ofMa and Mb satisfying
Eq. ~1!. If such a pair is found, it checks whether or notMa
improvesv1 . If yes, v1 is substituted byMa(v1), otherwise
v2 by Ma

21(v2)5Mb(v1), and then the search is restarte
The iteration stops ifv15v2 . This procedure, which we refe
to as iterative partial transcription~IPT!, has as its output
the currentv1 .

Below, we apply IPT to local minima with respect t
some move class. However, the IPT output state will in g
eral not be such a local minimum. Therefore, provided
IPT output state differs from both the input states, it is ad
tionally exposed to a local search with respect to this mo
class. We refer to this combination of IPT and local search
IPTLS.

The proposed IPT procedure decomposes the rather c
plex transformation of one state to another into several pa
analyzing with respect to which features these states dif
Disregarding the disadvantageous features, it effectiv
makes use of the favorable ones for a specific improvem
This approach can easily be understood when it is interpre
in physical terms: We consider low-energy states as differ
from the ground state by several noninteracting ‘‘eleme
tary’’ excitations, which, however, may involve rather com
plex modifications. Comparing two low-energy states,
identify the excitations which are present in one of the
states, but not in the other, and generate a new low-en
state by relaxation of all the excitations found. In this sen
IPT is a generalization of the basic idea of the approach
finding the ground state of a spin glass proposed by
washima and Suzuki@36#. These authors relax excitation
formed by clusters of neighboring spins, which they ident
by the comparison of different replicas.

There are some links between this method and other h
ristic search algorithms: IPT can be considered as a lo
search in the subspace spanned by the differing compon
of both states. The related move class is given by the po
bilities of simply inheriting a ‘‘part’’ of the other state
which corresponds to a shift to the alternative point in
particular subspace of the configuration space. As the L
Kernighan procedure for the TSP@5#, IPT takes rather com-
plex moves into account while diminishing the effort need
for exploring the search space by largely reducing its dim
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sion. Alternatively, in biological terms, IPT can be inte
preted as the deterministic transcription of~groups of! genes.

IPT is applicable to several problems. For example,
the TSP,Ma would correspond to the transcription of a pa
of the tour; for a short-range Ising spin glass,Ma would
describe the flipping of a cluster of neighboring spins,
Ref. @36#. However, IPT is clearly not applicable to problem
with long-range interaction such as the Coulomb glass~an
Ising spin glass with Coulomb interaction!.

B. Realization for the TSP

We illustrate IPT by applying it to the traveling salesm
problem. The states~possible solutions! are permutations o
the N given cities. The length of the round-trip correspon
to the potential energy to be minimized. We use the follo
ing notions: tour and subtour denote closed round-tr
through all cities and part of the cities, respectively, wher
chains and subchains stand for tours and subtours with
connection eliminated, respectively. The number of cities
a subchain is referred to as its size. Thus, to identify pair
transformationsMa andMb in the sense of the general d
scription of IPT means, considering two tours, to search
subchains which include the same cities in a different ord
and have the same initial and final cities.

Starting from two tours A and B, IPT proceeds accordi
to the following scheme.~1! Formation of a reduced repre
sentation: For each city, check whether or not it has the s
neighbors in both tours/subtours. If yes, create a new pa
subtours by omitting this city and connecting its neighbo
Let the number of cities in the reduced problem beNr . The
‘‘next’’ cities of i in A, i.e., the cities following the cityi in
tour A of the reduced problem, are denoted byni ,1

A ,ni ,2
A ,ni ,3

A ,
and so on; the ‘‘previous’’ cities of i are named
pi ,1

A ,pi ,2
A ,pi ,3

A , and so on. The cities of tourB are referred to
analogously.~2! Comparison of subchains of the reduc
tours A and B where their sizes increases from 4 toNr /2
11: Check for alli, whether the final cities are the sam
that is, whether ni ,s21

A 5ni ,s21
B , or alternatively pi ,s21

A

5ni ,s21
B . Provided one of these conditions is fulfilled, inve

tigate whether or not the corresponding subchains incl
the same cities@37#. If yes, substitute in the original tours th
worse of the corresponding subchains by the better one~in
the case of equality, substitute the corresponding subcha
B), and go to step~1!. ~3! Choose the better of the curre
original toursA andB to be the IPT output.

Our IPT algorithm for the TSP has some resemblance
the subroute transcription procedure originally proposed
Brady @23#, later adopted by Yamamuraet al. @38,39# in the
‘‘subtour exchange crossover’’ operator of a genetic T
algorithm. However, these two methods do not require u
fulfill the restriction that the two subchains must have t
same initial and final cities. This condition is substantial
our approach: It guarantees that each transcription of a
chain diminishes the tour length. Moreover, it largely r
duces the number of pairs of subchains to be compare
detail ~whether or not they include the same cities!, and thus
the CPU time as well.

III. MAIN ALGORITHM

The effectiveness of the IPT procedure can only
judged in the context of the main algorithm in which it
r
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embedded. As such, we consider the multi-start-local-sea
algorithm and the thermal-cycling algorithm. In both cas
IPT acts on local minima only. Thus, we always use it
combination with an additional local search on output sta
differing from both the input states, that is in the IPTL
version.

A. Multistart local search

The simplest manner of using a multistart-local-search
gorithm for the solution of an optimization problem is
performK times a local search starting from a random sta
and to take the lowest of the resulting states as the final s
This algorithm is primitive, but it has the advantage of ha
ing only a single adjustable parameter, namelyK.

Incorporating IPTLS into this multi-start local search pe
mits to combine the information obtained by the individu
trials more efficiently. For that, the first approximation of th
solution is obtained by a local search starting from a rand
state. Then, forj 52 to K, IPTLS is performed between th
( j 21)th approximation and the state obtained by thej th
local search starting from a random state. The output sta
considered as thej th approximation.

The performance of this extended multistart-local-sea
approach is likely to improve when ‘‘searching in parallel
cf. @23,40#. In order to do so, we utilize an archive ofNa
states (Na,K), where the state of lowest energy is cons
ered as the current approximation. The archive is initializ
by Na local searches starting from states chosen at rand
After this,K2Na times the following steps are performed:
new state is generated by a local search starting from a
dom state. Then, a series of IPTLSs is performed betw
this new state and the archive states. As soon as the resu
state has a shorter tour length than the currently sele
archive state, it is substituted for this archive state, and
series of IPTLSs is terminated. Finally, after finishing the
K local searches extended by IPTLS, we try to improve
archive by applying IPTLS to all pairs of states contained
it.

The ‘‘searching in parallel’’ approach is promising fo
three reasons: This method is, in effect, a partition of
computational effort into several search processes in orde
minimize the failure risk@40#. More importantly, the low-
energy states, created during the expensive local search
ing from random states, are used multiply by means of
series of IPTLSs. Finally, the local search step following
‘‘successful’’ IPT has to be performed at most once with
each series.

B. Thermal cycling

Thermal cycling@19# has been shown to be far more e
ficient than multistart local search. It consists of cyclic he
ings and quenchings by metropolis and local-search pro
dures, respectively, where the amount of energy depos
into the sample during the individual heatings decrease
the turn of the optimization process. This algorithm wor
particularly well when applied to an archive ofNa samples
rather than to a single sample.

The embedding of IPTLS in thermal cycling is achiev
in the following three ways.~i! The multistart local search
creating the initial archive is enhanced by additional IPT
as described in the previous subsection.~ii ! Each temperature
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step starts with trying to improve the archive by applyi
IPTLS to all pairs of archive states, where the output st
always replaces the better of the two input state
substituting the worse of the two would cause a too early l
of variety in the archive, cf.@23#. ~iii ! After each thermal
cycle, a series of IPTLSs between the final state and all
chive states with energies smaller or equal to that of
initial state is performed. This series is terminated as soo
one of the archive states is improved by the correspond
IPTLS step. In this sense, each thermal cycle does not ac
its initial state only, but on~a part of! the whole archive.

Moreover, the inclusion of IPTLS between the final sta
of each cycle and the archive states suggests a change
heating process. In Ref.@19#, a constant number of modifi
cations is performed for heating, independent of the prob
size. Now, this number is chosen to be proportional to
problem size. The reason for this change is the followi
For very large problems, the total modification of the st
within one heating-quenching cycle should frequently b
superposition of independent, ‘‘local’’ variations. Most
these variations cause an increase of the energy. Thu
@19#, their number must be small to have a realistic cha
for a net improvement. However, when IPTLS is includ
for postprocessing, the undesirable ‘‘local’’ variations a
filtered out to a large extent, such that the above restric
can be abandoned.

IV. APPLICATION TESTS

A. Implementation details

We now demonstrate the efficiency of the two algorith
described in Secs. III A and III B, respectively, for the TS
These algorithms rely on an adequate local search proced
Here, we use a slightly improved version of the local sea
implementation of Ref.@19#. Thus, we have the choice be
tween four alternative possibilities concerning the kind
metastability to be reached:~a! stable with respect to revers
of a subchain, as well as to shift of a city;~b! same as~a!,
and stable with respect to cutting three connections of
tour, and concatenating the three subchains in a new man
~c! same as~b!, and stable with respect to rearrangements
first cutting the tour twice and forming two separated su
tours, and connecting then these subtours after cutting
other connections;~d! same as~c!, and stable concerning
restricted Lin-Kernighan search@5# that consists of cutting
the tour once, then several times alternately cutting the ch
and concatenating the subchains, and finally connecting
ends of the chain again, where the number of trials to mod
the chain is restricted to 1000.

In the present study, we have performed numerical
periments considering move class~a! or ~d! mainly.

The efficiency of our local search approach rests on th
principles. ~i! New connections are tried according to i
creasing length, where appropriate bounds are utilized to
minate the search as soon as it becomes useless.~ii ! In stage
~c!, we first tabulate all rearrangements, which decomp
the original tour into two subtours with a shorter total leng
Then, we search for those decompositions of the orig
tour into two subtours, starting from which one of the tab
lated rearrangements produces a new, shorter tour.~iii ! Lim-
iting the number of trials in~d! improves the efficiency con
te
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siderably if the cities are clustered, i.e., if a few of th
distances between neighboring cities in the optimal tour
much larger than the others.

The IPT part is the same in both of the presented al
rithms. It requires a computational effort which is rough
proportional toN2. However, due to the use of a reduce
representation, the proportionality constant seems to be s
in practice: We performed multistart-local-search-wit
IPTLS runs (Na51) for sets of cities, randomly distribute
in a square, with Euclidian metric. We observed that, for
to several thousand cities, even when only move class~a! is
taken into account, the CPU time for the IPT is roughly o
order of magnitude smaller than the CPU time for the lo
search.

Our thermal-cycling code@19# was adapted to using
IPTLS in three points:~i! Since IPTLS ensures a high qualit
of the primary archive, the corresponding effort could
diminished; we now perform 30Na rather than 50Na
searches starting from random states in initializing the
chive.~ii ! The heating part in thermal cycling, see Sec. III
has been changed in comparison to@19# according to the last
paragraph of the previous section; each heating is termin
afterN/10 rather than after 50 modifications of the tour.~iii !
Due to the efficiency enhancement of the individual therm
cycles by IPTLS, we now perform 2Na rather than 5Na
cycles before deciding whether or not the temperature ca
decreased. All other adjustable parameters of thermal cyc
have the same values as in Ref.@19#.

For comparison, we have also performed a series of r
of a carefully tuned SA code, where the adjustable para
eters were optimized for the instance considered. In this
that way we took into account all the essential points d
cussed in the simulated annealing section of the TSP rev
@3#. Our program uses an adaptive temperature schedule
automatically shrinks the move class utilized in the turn
the cooling process.

More specifically, as starting temperature of SA, w
choose 1/10 of the length reduction when quenching a r
dom tour, divided by the number of cities. At each tempe
ture, we perform a given number of sweeps. Then, if dur
this series of sweeps the best state found so far could no
improved, we decrease the temperature by a factor 0.9;
erwise we perform the same number of sweeps with
changed temperature again, and so on. Finally, after 10 t
perature steps without improvement of the best state so
we terminate the cooling, and, for this best state, we perfo
a local search considering the complete move class~a!. This
adaptive exponential schedule is robust concerning mode
changes of the initial temperature. In optimizing our imp
mentation, we have also tried logarithmic and 1/k schedules.
But none of them lead to a clear acceleration compared to
schedule described.

In our implementation, we construct the SA move cla
starting from the local-search move class~a!, and restricting
it by neighborhood pruning. This means that the number
neighbors considered in selecting the first of the new conn
tions of a move@41# is temperature dependent: We choo
the upper bound of the corresponding neighbor identificat
number~1 for nearest neighbor, 2 for next-nearest neighb
and so on! as 2.5 times its mean value for the tour modi
cations performed within the previous series of sweeps. T
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neighborhood pruning is very effective; without it, the pr
gram would be slower by roughly a factor of 40~for 1%
accuracy!.

The numerical experiments reported in this paper w
performed using an HP K460 with 180 MHz PA8000 pr
cessors, running under HP-UX 10.20~all CPU times given
relate to one processor!. Our code was written inFORTRAN77.

B. Multistart-local-search results

Since heuristic procedures yield only approximate so
tions, the truly important property is the relation between
mean quality of the solution, that is the deviation of the me
tour length from the global optimum, and the required co
puting time, tCPU. Thus, in order to illustrate the perfor
mance of IPT, we have investigated the influence of the
justable parameters on this relation for the 532 No
American cities problem~att532!, a standard example from
theTSPLIB95 library @32#. These results are presented in Fig
1–3. Moreover, to check for robustness and size depende
we have additionally studied five other instances from
TSPLIB95 library, i.e., pcb442, rat783, fl1577, pr2392, a
fl3795~the numerical part of the name denotes the numbe
cities!, considering a smaller number of parameter sets,
Tables I and II. Except for pr2392, the instances chosen
the same as in@19#.

The performance of multistart local searches with mo
classes~a! and ~d!, respectively, is shown in Fig. 1 fo
att532. This graph contrasts results obtained forNa51 with
and without IPTLS, and includes SA data~cf. previous sub-
section! for comparison. In particular, Fig. 1 shows the fo
lowing. ~i! For largetCPU, i.e., for a large number of loca
searchesK, considerable performance gains are reac
when the multistart local search is extended by IPTLS. T
is observed for move class~a!, as well as for move class~d!.
The speed gains are small whenK is close to 1, but they
rapidly increase withK. For the highestK considered, they
amount to factors of roughly 100 and 30 for multi-start loc

FIG. 1. Effect of embedding IPTLS in multistart local searc
relation between computing timetCPU ~in seconds! and average
deviation,dL5Lmean227686, of the obtained approximate solutio
from the optimum tour length for the Padberg-Rinaldi 532 cit
problem, att532.s (d) andn (m), multistart local search base
on move classes~a! and~d!, respectively, without~with! IPTLS; >,
SA. In all cases, averages were taken from 100 runs; fluctuat
(1s region! are indicated by error bars if they exceed the sym
size. The lines, full for multistart local search, and dashed for S
are guides to the eye only.
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searches concerning~a! and ~d!, respectively. In further ex-
periments, we obtained analogous results for move cla
~b! and ~c!. ~ii ! Even without IPTLS, multistart local searc
using a sufficiently complex move class can be clearly
vantageous in comparison to SA@42#: compare the multi-
start-local-search data for move class~d! with the SA results.
~iii ! For att532, if an accuracy between 1 and 3 % is requir
even multistart local search according to move class~a! ex-
tended by IPTLS can compete with SA: it is a bit better f
tCPU,4 sec, and slightly worse for largertCPU. However, if
higher accuracies are desired, our SA program outperfo
the multistart-local-search-with-IPTLS code, which utiliz
only move class~a!. A minor result of this comparison, no
obvious from the figure since each point represents an a
age of 100 runs, concerns the variance of the final t
length: the variance is considerably smaller for the mu
start local search according to~a! extended by IPTLS than
for SA.

The advantage of ‘‘searching in parallel’’@23,40# is dem-
onstrated by Fig. 2. We compare the multistart-local-sear

ns
l
,

FIG. 2. Effect of ‘‘parallelizing’’ multistart local search with
IPTLS: mean deviation from optimum tour length in dependence
computing time for att532.d and *, Na51 and 10, respectively
for move class~a!; m,3, and1, Na51, 3, and 10, respectively, fo
move class~d!; > and . ; SA without and with ‘‘parallelizing,’’
respectively. For further details see caption of Fig. 1.

FIG. 3. Effect of embedding IPTLS in thermal cycling: mea
deviation from optimum tour length in dependence on comput
time for att532.r ~p!, thermal cycling without~with! IPTLS; m

~1!, multistart local search with IPTLS forNa51 ~10!, included for
comparison. In all cases, move class~d! is considered. The lines
full for multistart local search, and dashed for thermal cycling,
guides to the eye only. For further details see caption of Fig. 1
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with-IPTLS results of Fig. 1 to data obtained with archiv
of 3 and 10 states. For small numbers of local searcheK,
there is almost no influence of ‘‘parallelizing,’’ i.e., of usin
Na.1. However, asK increases, corresponding to increasi
tCPU, the ‘‘searching in parallel’’ strategy performs bett
and better. Moreover, up to some optimum archive size,
advantage increases also withNa. Above the optimum size
the performance slightly decreases with increasingNa: addi-
tional runs for move class~d! showed that, in the whole
accuracy region presented in Fig. 2, the performance
creases a bit when the archive size increases from 10 to
The optimum archive size seems to rise slowly withK.

The SA data, given in Fig. 1, are included into Fig. 2 als
It is remarkable that for att532 multistart local search w
IPTLS performed in parallel (Na510) has roughly the sam
performance as our tuned SA program. However, the for
method has the considerable advantage to possess only
tuning parameter, which is, moreover, rather ‘‘uncritical.’

To ensure fairness of the comparison, we have imp
mented the searching-in-parallel idea also in our SA p
gram: four runs, each taking one fourth of the available co
puting time, are performed, and the best tour found in th
runs is taken as final result, cf.@3,23,40#. This performance
curve is presented in Fig. 2. There is a clear efficiency
crease arising from this parallelism if an accuracy better t
1% is desired. However, for att532, as Fig. 2 shows, e
this sophisticated SA algorithm is still far slower than t
multi-start local search with IPTLS concerning move cla
~d!.

TABLE I. ‘‘Parallel’’ multi-start local search with IPTLS: de-
pendence of the tour length of the approximate solution, and of
computing time on the number of searchesK, and on the archive
size Na for six instances of theTSPLIB95 library @32#, where the
local-search algorithm is based on move class~d!. For series of 20
runs, smallest and largest tour lengths,Lmin and Lmax, number of
obtaining the best known tour length,nbest, mean tour length,
Lmean, and computing time in seconds,tCPU, are given.

Problem K Na Lmin Lmax nbest Lmean tCPU

pcb442 50 1 50778 50976 1 50906 10
pcb442 500 1 50778 50907 15 50794 10
pcb442 500 10 50778 50795 18 50780 11

att532 50 1 27717 27803 0 27755 12
att532 500 1 27686 27737 8 27700 119
att532 500 10 27686 27693 13 27688 13

rat783 50 1 8823 8874 0 8849 17
rat783 500 1 8809 8839 0 8823 162
rat783 500 10 8806 8826 3 8815 191

fl1577 50 1 22250 22308 0 22266 113
fl1577 500 1 22249 22254 8 22251 111
fl1577 500 10 22249 22249 20 22249 116

pr2392 50 1 382178 385182 0 383675 13
pr2392 500 1 380776 383232 0 382255 131
pr2392 500 10 379915 382980 0 381757 179

fl3795 50 1 28774 28907 0 28815 781
fl3795 500 1 28772 28783 12 28775 741
fl3795 500 10 28772 28779 13 28773 868
e
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e
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For a broader test of our code, we considered six symm
ric TSP instances taken from theTSPLIB95 library @32#, in-
cluding between 442 and 3795 cities. Table I presents res
for three different parameter sets of trials,K, and archive
sizes,Na. These data confirm the above interpretations c
cerning the performance of our algorithm.~i! For all in-
stances considered but pr2392, the best known tour len
@32# were reproduced. For pcb442, att532, rat783, a
fl1577, these values are the exact optima; fl3795 has not b
solved exactly yet. For pr2392, our best~mean! result ex-
ceeds the known exact optimum tour length by 0.5%~1%!.
~ii ! There is a considerable benefit of ‘‘searching in paralle
as illustrated by the results forK5500 with archive sizes 1
and 10, respectively.

Finally, the comparison of the data in Table I with tho
given in Table I of@19# is instructive. However, this consid
eration is complicated by the use of a slightly improved lo
search code in the present work, which typically cause
speed gain by a factor of 1.5. The comparison shows
multistart local search extended by IPTLS and perform
‘‘in parallel’’ reaches roughly the same efficiency as therm
cycling without IPTLS. In more detail, the former program
clearly faster for att532, fl1577, and fl3795, but slower f
rat783. For pcb442, both codes have roughly the same
formance. The fact that there is no clear size dependenc
this comparison is not surprising due to the large variety
the features~occurrence of clusters of cities, degener
cies, . . .! of the examples considered.

C. Thermal-cycling results

In order to study to what extent IPTLS improves therm
cycling, we have considered the same six symmetric T

e
TABLE II. Thermal cycling @19# extended by IPTLS: depen

dence of tour length, number of obtaining the best known t
length, and computing time on the archive size. For details
caption of Table I.

Problem Na Lmin Lmax nbest Lmean tCPU

pcb442 1 50778 51024 10 50860 14
pcb442 3 50778 50912 15 50800 33
pcb442 5 50778 50912 19 50785 60

att532 1 27686 27742 1 27714 19
att532 3 27686 27718 4 27701 47
att532 5 27686 27704 16 27688 88

rat783 1 8806 8839 2 8816 29
rat783 3 8806 8812 6 8808 62
rat783 5 8806 8809 14 8806.6 112

fl1577 1 22249 22262 2 22255 193
fl1577 3 22249 22261 9 22252 450
fl1577 5 22249 22253 16 22249.8 826

pr2392 1 378579 381023 0 380036 309
pr2392 3 378143 379649 0 378950 927
pr2392 5 378032 379398 1 378558 214
pr2392 8 378032 379000 1 378428 470
pr2392 12 378032 378655 7 378158 938

fl3795 1 28772 28774 19 28772.1 1520
fl3795 3 28772 28785 14 28774 3110
fl3795 5 28772 28772 20 28772 6050
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instances as above. Additionally, for comparison, we h
performed thermal-cycling runs without IPTLS for att53
using the same local-search implementation as in
thermal-cycling-with-IPTLS code. The results are presen
in Fig. 3 and in Table II.

Figure 3 illustrates the high efficiency of the therma
cycling approach: For att532, the performance of the origi
algorithm ~without IPTLS! is clearly better than that o
multi-start local search with IPTLS forNa51. It is compa-
rable to that of multi-start local search with IPTLS, appli
to archives of three states, cf. Fig. 2. In detail, original th
mal cycling is slower if low accuracy is desired, and bette
a high accuracy has to be achieved. However, this rankin
certainly TSP instance dependent.

The efficiency is further improved by embedding IPTL
in thermal cycling, see Fig. 3. For att532, there is a gain
a factor of 2 to 3; it slightly increases with the accura
demanded. The comparison to ‘‘parallelized’’ multi-start l
cal search with IPTLS yields a surprising result: For att5
when move class~d! is considered, the thermal-cycling-with
IPTLS code is only slightly better than that program, whi
is considerably simpler from the conceptional point of vie
~only two adjustable parameters!.

For other TSP instances however, thermal cycling w
IPTLS can be clearly more efficient than ‘‘parallelized
multistart local search with IPTLS, compare Table II
Table I with respect to rat783, pr2392, and fl3795. It is
markable that thermal cycling with IPTLS reproduced t
best known tour lengths for all the problems conside
within ‘‘reasonable’’ computing times. Moreover, comparin
Table II with Table I from@19# shows that, for the instance
pcb442, att532, and rat783, the thermal-cycling-with-IPT
program is typically by a factor of 2 to 3 faster than the co
used in@19#. For fl1577, the acceleration amounts to a fac
of 5, and, for fl3795, it is even larger—roughly a factor of 1
is obtained.

It is definitely problematic to use results obtained on d
ferent computing platforms~hardware, operating system, an
programming language! as the basis of a judgment. Neve
theless, we now compare the performance of our therm
cycling-with-IPTLS procedure with that of four other ap
proaches, but the results should be considered with care

It seems that our code is more efficient, for all instanc
but pcb442, than the genetic-local-search algorithm p
sented in@27#—a significantly improved version of the co
responding winning algorithm of theFirst International
Contest on Evolutionary Optimization@43,25#. In detail, our
code is slightly slower for pcb442 and slightly faster f
rat783, it has clear advantages for att532, in particular w
high accuracies have to be achieved, and it is consider
faster for fl1577 and fl3795. However, the approach p
sented in@27# has been optimized for solving large TSP i
stances by minimizing memory requirements; the distan
between cities are computed rather than looked up in a
tance table stored in the main memory. For example,
genetic-local-search algorithm of Ref.@27# needs 10 Mbyte
of main memory for solving fl3795 compared to 256 Mbyt
used by the program presented here.

In comparison to the iterated Lin-Kernighan approa
proposed by Johnson and McGeoch, the performance
which is illustrated by Table 16 of@3#, our program is slower
e
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by roughly a factor of 4 for pcb442 and att532 if the acc
racy of our results forNa53 is required. The performanc
gap seems to shrink with increasing accuracy demand@44#.
However, for fl3795, our code performs considerably bet
According to further calculations, this advantage arises
marily from a larger robustness of our code, and not fro
better scalability@44#.

Clearly, one should also attempt to make a compari
with the state-of-the-art exact algorithms. For the Padbe
Rinaldi 532 cities problem, the branch-and-cut program
Thienel and Nadeff, one of the presently fastest exact s
tion codes, needs 16.5 min on a SPARC10 machine@45#,
which corresponds to roughly 4 minutes computing time
our CPU. Utilizing an archive of 12 states and cyclica
quenching according to stage~d!, we performed 100 runs
Our Monte Carlo approach, i.e., thermal cycling extended
IPTLS, reproduced the optimum tour length 27686 in 97
the 100 runs, requiring on the average 246 CPU seconds
one of them. In the other three cases, we obtained tours
lengths 27693~once! or 27698~twice!. However, when com-
paring with exact algorithms for fl1577, the usefulness of
proposed approach is more obvious: Here, using an arc
of eight states, we obtained the exact optimum in 19 of
runs, and in one case a tour of length 22253. Our Mo
Carlo optimization requires 1390 CPU seconds on the a
age, whereas 106 CPU seconds were needed for the on
recently obtained exact solution of this problem on a DE
Alphastation 4100 5/400@33#.

Again, these comparisons should be interpreted with c
On the one hand, computing provably optimal solutions
quires much more effort than simply trying to find high
quality solutions without any guarantee. However, on
other hand, the required effort depends not only on the s
of the TSP instance, but also on its ‘‘character.’’ Thu
fl3795, for which our code yields solutions of the best know
tour length with high probability within ‘‘reasonable’’tCPU,
has—to the best of our knowledge—not been solved exa
yet.

V. CONCLUSIONS

We have presented an algorithm by means of which
effectiveness of local search based heuristic combinato
optimization procedures can be increased considerably.
algorithm, iterative partial transcription, is physically mo
vated: for a spin glass, it corresponds to searching for n
interacting clusters of spins with respect to which two sta
differ, and relaxing these excitations. Mathematically sp
ken, the algorithm can be understood as a search in the
space spanned by the differing components of two appr
mate solutions of the optimization problem. It transcrib
subsets of the components of the vector, representing
approximate solution, by the related components of the o
approximate solution if the quality of the former solution c
be increased in this way. This process continues iterativ
accounting for an increasing number of components.

For the traveling salesman problem, we have dem
strated the feasibility of this approach by embedding it in
multistart-local-search algorithm starting from rando
states, and, alternatively, in the thermal-cycling method.
both cases, a considerable acceleration of the computatio
high-quality approximate solutions was reached. For the T
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instances considered, these algorithms are far more effic
than SA.

There are several areas for future research, such a~i!
evaluating the performance of iterative partial transcript
for very large TSP instances,~ii ! investigating its usefulnes
in other combinatorial optimization problems, and~iii ! incor-
porating it in other heuristic combinatorial optimization pr
cedures.
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