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A procedure is presented that considerably improves the performance of local search based heuristic algo-
rithms for combinatorial optimization problems. It increases the average “gain” of the individual local
searches by merging pairs of solutions: certain parts of either solution are transcribed by the related parts of the
respective other solution, corresponding to flipping clusters of a spin glass. This iterative partial transcription
acts as a local search in the subspace spanned by the differing components of both solutions. Embedding it in
the simple multistart-local-search algorithm and in the thermal-cycling method, we demonstrate its effective-
ness for several instances of the traveling salesman problem. The obtained results indicate that, for this task,
such approaches are far superior to simulated anned#i§63-651X99)03904-5

PACS numbeps): 02.70.Lq, 02.60.Pn

I. INTRODUCTION plexity into account. Physically speaking, by means of the
. ) o i local search we create states that are only metastable; the

~ Combinatorial optimization problems occur in many gegree of metastability is defined by the move class consid-
fields of physics, engineering, gnd economics. They arg g, Thus, according to increasing complexity of the moves,
closely related_ to statistical physics, SEe, E['Q"Z] an_d r'ef—. one can define hierarchies of classes of metastable states.
erences therein. Many of the combinatorial Opt'm'zat'O”Considering more complex moves corresponds to waiting

problems are difficult to solve since they are NP-hard, i.€.j5hger relaxation times, so that, on the average, one ends up
there is no algorithm known that finds the exact solution with;, |ower local minima.

an effort proportional to any power of the problem size. One e |ocal search concept is simple. However, in sophisti-
of the most popular such tasks is the traveling salesmagyieq algorithms, the moves considered can be fairly compli-
problem(TSP: how to find the shortest round-trip through a cated, i.e., they may concern a rather large number of de-
given set of cities. For recent surveys on various approache@;rees of freedom as in the Lin-Kernighan algorithm for the
to the TSP seg3,4]. TSP[5]. The art of developing such algorithms is to select
Many combinatorial optimization problems are of consid-from the set of all possible modifications, related to a given
erable practical importance. Thus, algorithms are needed thaumber of degrees of freedom, an appropriate small part to
yield good approximations of the exact solution within abe included into the move class.
reasonable computing time, and which require only a modest In order to overcome barriers between local minima,
effort in programming. Various deterministic and probabilis- simulated annealingSA) [6,7] assumes the “sample{cur-
tic approaches, so-called search heuristics, have been preent approximate solutiorto be in contact with a heat bath
posed to construct such approximation algorithms. A considwith a time dependent temperature. Thus, moves increasing
erable part of them borrows ideas from physics and biologythe energy are also taken into account, where the acceptance
The conceptionally simplest approximation algorithms areprobability decreases exponentially with increasing energy
local searchprocedures. They can be best understood wheghange. Slow cooling permits the “sample” to reach a par-
interpreting the approximate solutions as discrete pointsicularly deep local minimum.
(state$ in a high-dimensional hilly landscape, and the quan- Several proposals have been made to improve this basic
tity to be optimized as the corresponding potential energyconcept, in particular to optimize the temperature schedule of
These algorithms proceed iteratively, improving the solutionthe annealing process, see e.f8—13 and references
by small modificationgmoves step by step: The neighbor- therein, or to adapt SA to parallel computer architectures
hood of the current state, defined by the set of permitted14—-17. Moreover, substituting the random decision of ac-
modifications of the solutiofmove clasy is searched for cepting energy increasing moves by a deterministic decision
states of lower energy. If such a state is found, it is substiaccording to whether or not the energy change exceeds a
tuted for the current state, and a new search is started. Otleertain upper bound, one gdtgeshold acceptinga closely
erwise, the process stops because a local minimum has besglated concepfl18]. Finally, replacing the slow cooling of
reached. SA by thermal cycling i.e., by cyclically heating and
Usually, the chances to find the global minimum in this quenching with decreasing amplitude, can considerably im-
way—or in the case of multimodalitidegeneracy one of  prove the performancil9]; for an early approach based on
the global minima—vanish exponentially as the problem sizecyclically heating(with the temperature chosen at rangom
rises. They can be increased by taking moves of higher comand rapid cooling seg20].
Genetic algorithm$21,22 offer another possibility to es-
cape from local minima. They simulate a biological evolu-
*Electronic address: a.moebius@ifw-dresden.de tion process by operating on a population of individuals-
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proximate solutions where new generations are producedenergy. This is achieved by making good use of the informa-
through the repeated application of genetic operators such d&ien inherent in the transformation mapping one to the other
selection, crossover and mutation. Particularly effectivdocal minimum.

seem to be algorithms in which the individuals are local In detail, consider two stateg andv, (possible approxi-
minima, see[23—-27 and references therein. However, a mate solutions of the given optimization problgrancoded
guarantee to find the global optimum within any finite com-as two vectors, which differ ik components. We look for
puting time cannot be given by this approach, nor by anydecompositions of the transformatidth mappingv; to v,
other of the heuristic methods mentioned, though, for infiniteinto a product of two commuting transformatiod, and
computing time, the convergence of Q#ith a logarithmic My,

temperature schedyleand of a broad class of evolutionary _ _ _

algorithms has been prov¢as,29. V2= M) =M M (V1) =Ma(Mg(v)), @

At the same time, exact solution methods have been desuch thatv ,(v;) and M 4(v,) are possible approximate so-
veloped further. They are mainly based on branch-and-bounidtions of the optimization problem too, and that, andM 4
and branch-and-cut ide480,31. Thus, a specific TSP in- modify disjunct sets ok, andkz components of/;. Thus,
stance including 7397 cities was solMed32]. However, for  k_+ ks=k, so that bottM , andM 4 “transcribe” part of the
a fixed size, the effort necessary to find the exact solution casomponents of/, by the values of these componentsvin
vary enormously from problem to problem. For example, the The procedure proposed here is an iterative search for
TspLIB95 library [32] includes an instance of 1577 cities that appropriate transformations of this kind. It merges two states
could only very recently be solved by Applegate and co-y, andv,: According to increasing,, where =k,=<k, it
workers; they needed approximately 280 hours on a DEGystematically searches for pairs M, and M, satisfying
Alphastation 4100 5/40083]. Eq. (1). If such a pair is found, it checks whether or mat,

In this paper, we preseriterative partial transcription improvesv;. If yes, v, is substituted b ,(v;), otherwise
(IPT),_ an approach to_ improve th(_e p_erf(_)rmance of heur|st|q,2 by MZI(Vz)ZMB(Vl), and then the search is restarted.
algorithms fqr combinatorial optimization problems: IPT The iteration stops i, =V, . This procedure, which we refer
compares pairs of states, represented by vectors of coordy asiterative partial transcription(IPT), has as its output
nates. In an iterative procedure, it systematically searches fqfe currentv; .
the sqbsets of the components of these_vectors, the copying gelow, we apply IPT to local minima with respect to
of which from one vector to the other yields new approxi- some move class. However, the IPT output state will in gen-
mate solutions with decreased energy. IPT is particularly g ot be such a local minimum. Therefore, provided the
useful when applied to local minima. We illustrate its effi- |pT output state differs from both the input states, it is addi-
ciency for the TSP, demonstrating that the incorporation ojonally exposed to a local search with respect to this move
IPT into local search based heuristic algorithms can considg|ass. We refer to this combination of IPT and local search as
erably increase their performance. IPTLS.

The paper is orgamzed as follows: In Sec. Il, we pre_sent The proposed IPT procedure decomposes the rather com-
the IPT procedure in a general manner, as well as applied tgiex transformation of one state to another into several parts,
the TSP. Section Ill is devoted to embedding IPT in multi- 3na1yzing with respect to which features these states differ.
start local search a_nd in thermal cy_cllng. Section IV repor_tsDisregarding the disadvantageous features, it effectively
on the results obtained for several instances of the traveling,5xes use of the favorable ones for a specific improvement.
salesman problem. Finally, Sec. V summarizes the paper. Thjs approach can easily be understood when it is interpreted

in physical terms: We consider low-energy states as differing

Il. ITERATIVE PARTIAL TRANSCRIPTION from the_grpund state by several noni_nteracting “elemen-

tary” excitations, which, however, may involve rather com-
plex modifications. Comparing two low-energy states, we

The design of the optimization method proposed here isdentify the excitations which are present in one of these
motivated by the use of local search algorithms common tetates, but not in the other, and generate a new low-energy
three highly effective Monte Carlo optimization procedures:state by relaxation of all the excitations found. In this sense,
theiterated Lin-Kernighammethod for the TSIP3,34,39,the  IPT is a generalization of the basic idea of the approach to
thermal-cyclingapproach 19], and thegenetic-local-search finding the ground state of a spin glass proposed by Ka-
strategy[24—27). The efficiency of these approaches in find- washima and SuzuKi36]. These authors relax excitations
ing states of particularly low energy rests on the considerformed by clusters of neighboring spins, which they identify
ation of local minima rather than of arbitrary states, and orby the comparison of different replicas.
modifying the local minima by sophisticated operations. There are some links between this method and other heu-
These operations typically involve elaborate manipulatiorristic search algorithms: IPT can be considered as a local
steps, and in some cases they make use of other locakarch in the subspace spanned by the differing components
minima. Compared to SA, a single such modification con-of both states. The related move class is given by the possi-
cerns a rather large number of degrees of freedom. Obilities of simply inheriting a “part” of the other state,
course, it demands far more CPU time than a single Mewhich corresponds to a shift to the alternative point in a
tropolis step in SA. The idea of our proposal is to increasearticular subspace of the configuration space. As the Lin-
the average “gain” of the individual local searches by a fastKernighan procedure for the TSB], IPT takes rather com-
postprocessing phase, and consequently to reduce the avetex moves into account while diminishing the effort needed
age number of local search steps required to reach a certafar exploring the search space by largely reducing its dimen-

A. General formulation
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sion. Alternatively, in biological terms, IPT can be inter- embedded. As such, we consider the multi-start-local-search

preted as the deterministic transcription(gfoups of genes.  algorithm and the thermal-cycling algorithm. In both cases,
IPT is applicable to several problems. For example, forlPT acts on local minima only. Thus, we always use it in

the TSP M, would correspond to the transcription of a part combination with an additional local search on output states

of the tour; for a short-range Ising spin glassd,, would  differing from both the input states, that is in the IPTLS
describe the flipping of a cluster of neighboring spins, cf.yersion.

Ref.[36]. However, IPT is clearly not applicable to problems
with long-range interaction such as the Coulomb glass A. Multistart local search

Ising spin glass with Coulomb interactipon . . .
gsping b The simplest manner of using a multistart-local-search al-

B. Realization for the TSP gorithm for the solution of an optimization problem is to
performK times a local search starting from a random state,
and to take the lowest of the resulting states as the final state.
This algorithm is primitive, but it has the advantage of hav-
ing only a single adjustable parameter, namigly

Incorporating IPTLS into this multi-start local search per-
ts to combine the information obtained by the individual

We illustrate IPT by applying it to the traveling salesman
problem. The stategossible solutionsare permutations of
the N given cities. The length of the round-trip corresponds
to the potential energy to be minimized. We use the follow-
ing notions: tour and subtour denote closed round-trip%i
through all cities and part of the cities, respectively, wherea§ri

chains and subchains stand for tours and subtours with o als more efficiently. For that, the first approximation of the
ns 3 uobchal r tou uotours with ong,), \tion is obtained by a local search starting from a random
connection eliminated, respectively. The number of cities in

a subchain is referred to as its size. Thus, to identify pairs oftate' Then, foj =2 toK, IPTLS is performed between the

, . (J—1)th approximation and the state obtained by tie
ggr?sgi%;mﬁlfgyniezgg Mcg r:r;ig:aeiir?er:\?v% ?:;Lturr]: ?:gigarlcﬁiorlocal search starting from a random state. The output state is
subghains which includ'e the samegcities in a éifferent orderConSidered as thh approximation.

' The performance of this extended multistart-local-search

angtg?t\i/r? t?ﬁ);a&i 'tr:)'ﬂ‘: Tgn?jngl fllDtll?s.roceeds accordin approach is likely to improve when “searching in parallel,”
g ’ P Yet. [23,40. In order to do so, we utilize an archive bdF,

to the following scheme(1l) Formation of a reduced repre- . .
sentation: For each city, check whether or not it has the samsetateS Na<K), where the state of lowest energy is consid-

. . . ?red as the current approximation. The archive is initialized
neighbors in both tours/subtours. If yes, create a new pair Py N, local searches starting from states chosen at random
subtours by omitting this city and connecting its neighbors Y Na 9 '

Cet the rumber of cies i he recced prolemie The (1% o mes he folowing steps e peromed:
“next” cities of i in A, i.e., the cities following the city in 9 y 9

A A dom state. Then, a series of IPTLSs is performed between
tour A of the .reduced“ probllem,”are. (_jenoteq@,ni‘z,niﬁ, this new state and the archive states. As soon as the resulting
a/rld Eo /?n, the “previous . cities ofi are named state has a shorter tour length than the currently selected
Pi1:Pi2,Pi3, and so on. The cities of tow are referred 0 5 ohive state, it is substituted for this archive state, and the
analogously.(2) Comparison of subchains of the reducedgeries of IPTLSS is terminated. Finally, after finishing these
tours A and B where their sizes increases from 4 tN, /2 |ocq) searches extended by IPTLS, we try to improve the
+1: Check for alli, whether the final cities are the same, 5,chive by applying IPTLS to all pairs of states contained in
that is, whethernfy_;=n?; ;, or alternatively pf's_ ; it
=nﬁs,l. Provided one of these conditions is fulfilled, inves- The “Searching in para||e|” approach is promising for
tigate whether or not the corresponding subchains includehree reasons: This method is, in effect, a partition of the
the same citief37]. If yes, substitute in the original tours the computational effort into several search processes in order to
worse of the corresponding subchains by the better(@ne minimize the failure risk40]. More importantly, the low-
the case of equality, substitute the corresponding subchain ignergy states, created during the expensive local search start-
B), and go to stegl). (3) Choose the better of the current ing from random states, are used multiply by means of the
original toursA andB to be the IPT output. series of IPTLSs. Finally, the local search step following a
Our IPT algorithm for the TSP has some resemblance tgsuccessful” IPT has to be performed at most once within
the subroute transcription procedure originally proposed byach series.
Brady[23], later adopted by Yamamue al.[38,39 in the
“subtour exchange crossover” operator of a genetic TSP B. Thermal cycling

algorithm. However, these two methods do not require us to  Thermal cycling[19] has been shown to be far more ef-
fulfill the restriction that the two subchains must have theficient than multistart local search. It consists of cyclic heat-
same initial and final cities. This condition is substantial inings and quenchings by metropolis and local-search proce-
our approach: It guarantees that each transcription of a sulures, respectively, where the amount of energy deposited
chain diminishes the tour length. Moreover, it largely re-into the sample during the individual heatings decreases in
duces the number of pairs of subchains to be compared ithe turn of the optimization process. This algorithm works
detail (whether or not they include the same citieend thus particu]aﬂy well when app||ed to an archive Nfa Samp|es
the CPU time as well. rather than to a single sample.
IIl. MAIN ALGORITHM _ The embedding of IPTLS_ in thermal_cycling is achieved
in the following three ways(i) The multistart local search
The effectiveness of the IPT procedure can only becreating the initial archive is enhanced by additional IPTLS
judged in the context of the main algorithm in which it is as described in the previous subsecti@n.Each temperature
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step starts with trying to improve the archive by applyingsiderably if the cities are clustered, i.e., if a few of the
IPTLS to all pairs of archive states, where the output statelistances between neighboring cities in the optimal tour are
always replaces the better of the two input states—much larger than the others.
substituting the worse of the two would cause a too early loss The IPT part is the same in both of the presented algo-
of variety in the archive, cf[23]. (ii) After each thermal rithms. It requires a computational effort which is roughly
cycle, a series of IPTLSs between the final state and all aproportional toN?. However, due to the use of a reduced
chive states with energies smaller or equal to that of theepresentation, the proportionality constant seems to be small
initial state is performed. This series is terminated as soon as practice: We performed multistart-local-search-with-
one of the archive states is improved by the correspondingPTLS runs (N,=1) for sets of cities, randomly distributed
IPTLS step. In this sense, each thermal cycle does not act dn a square, with Euclidian metric. We observed that, for up
its initial state only, but or{a part of the whole archive. to several thousand cities, even when only move dlass
Moreover, the inclusion of IPTLS between the final statetaken into account, the CPU time for the IPT is roughly one
of each cycle and the archive states suggests a change in ta&ler of magnitude smaller than the CPU time for the local
heating process. In Ref19], a constant number of modifi- Search.
cations is performed for heating, independent of the problem Our thermal-cycling codg19] was adapted to using

size. Now, this number is chosen to be proportional to thdPTLS in three pointsti) Since IPTLS ensures a high quality

problem size. The reason for this change is the following®f the primary archive, the corresponding effort could be

For very large problems, the total modification of the statediminiShEd; we now perform 30, rather than 50N,

within one heating-quenching cycle should frequently be Searches starting from random states in initializing the ar-

superposition of independent, “local” variations. Most of chive. (ii) The heatlng partin t_hermal cyclmg_, see Sec. Il B,
. . has been changed in comparisorj 18] according to the last
these variations cause an increase of the energy. Thus, ) = (9 .
: 27 ragraph of the previous section; each heating is terminated
[19], their number must be small to have a realistic chanc oo
. B after N/10 rather than after 50 modifications of the todiir.)
for a net improvement. However, when IPTLS is included e A
. . . . - Due to the efficiency enhancement of the individual thermal
for postprocessing, the undesirable “local” variations are . cles by IPTLS. we now erform N, rather than 5
filtered out to a large extent, such that the above restrictior. y L P a
cycles before deciding whether or not the temperature can be
can be abandoned. . :
decreased. All other adjustable parameters of thermal cycling
have the same values as in Rgf9].
For comparison, we have also performed a series of runs
of a carefully tuned SA code, where the adjustable param-
We now demonstrate the efficiency of the two algorithmseters were optimized for the instance considered. In this or
described in Secs. Il A and Il B, respectively, for the TSP.that way we took into account all the essential points dis-
These algorithms rely on an adequate local search procedur@issed in the simulated annealing section of the TSP review
Here, we use a slightly improved version of the local search3]. Our program uses an adaptive temperature schedule, and
implementation of Ref[19]. Thus, we have the choice be- automatically shrinks the move class utilized in the turn of
tween four alternative possibilities concerning the kind ofthe cooling process.
metastability to be reache(h) stable with respect to reverse More specifically, as starting temperature of SA, we
of a subchain, as well as to shift of a citjs) same ada), choose 1/10 of the length reduction when quenching a ran-
and stable with respect to cutting three connections of thelom tour, divided by the number of cities. At each tempera-
tour, and concatenating the three subchains in a new mannétre, we perform a given number of sweeps. Then, if during
(c) same agb), and stable with respect to rearrangements bythis series of sweeps the best state found so far could not be
first cutting the tour twice and forming two separated sub4mproved, we decrease the temperature by a factor 0.9; oth-
tours, and connecting then these subtours after cutting twerwise we perform the same number of sweeps with un-
other connections(d) same agc), and stable concerning a changed temperature again, and so on. Finally, after 10 tem-
restricted Lin-Kernighan seardb] that consists of cutting perature steps without improvement of the best state so far,
the tour once, then several times alternately cutting the chaiwe terminate the cooling, and, for this best state, we perform
and concatenating the subchains, and finally connecting the local search considering the complete move dassThis
ends of the chain again, where the number of trials to modifyadaptive exponential schedule is robust concerning moderate

IV. APPLICATION TESTS
A. Implementation details

the chain is restricted to 1000. changes of the initial temperature. In optimizing our imple-
In the present study, we have performed numerical exmentation, we have also tried logarithmic an#l $¢hedules.
periments considering move cla@ or (d) mainly. But none of them lead to a clear acceleration compared to the

The efficiency of our local search approach rests on threschedule described.

principles. (i) New connections are tried according to in- In our implementation, we construct the SA move class
creasing length, where appropriate bounds are utilized to testarting from the local-search move cldss and restricting
minate the search as soon as it becomes usélgskn stage it by neighborhood pruning. This means that the number of
(c), we first tabulate all rearrangements, which decomposeaeighbors considered in selecting the first of the new connec-
the original tour into two subtours with a shorter total length.tions of a move{41] is temperature dependent: We choose
Then, we search for those decompositions of the originathe upper bound of the corresponding neighbor identification
tour into two subtours, starting from which one of the tabu-number(1 for nearest neighbor, 2 for next-nearest neighbor,
lated rearrangements produces a new, shorter ¢diyrLim- and so omas 2.5 times its mean value for the tour modifi-
iting the number of trials ifd) improves the efficiency con- cations performed within the previous series of sweeps. This
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FIG. 1. Effect of embedding IPTLS in multistart local search:  FIG. 2. Effect of “parallelizing” multistart local search with
relation between computing timesp, (in seconds and average IPTLS: mean deviation from optimum tour length in dependence on
deviation,SL =L ,e5— 27686, of the obtained approximate solution computing time for att532@® and *, N,=1 and 10, respectively,
from the optimum tour length for the Padberg-Rinaldi 532 citiesfor move clasga); A, X, and+, N,=1, 3, and 10, respectively, for
problem, att5320 (@) andA (A), multistart local search based move clasqd); ¥« and % ; SA without and with “parallelizing,”
on move classe&®) and(d), respectively, withoutwith) IPTLS; ¥t, respectively. For further details see caption of Fig. 1.

SA. In all cases, averages were taken from 100 runs; fluctuations
(1o region are indicated by error bars if they exceed the symbolsearches concernin@ and (d), respectively. In further ex-
size. The lines, full for multistart local search, and dashed for SAperiments, we obtained analogous results for move classes
are guides to the eye only. (b) and(c). (ii) Even without IPTLS, multistart local search
using a sufficiently complex move class can be clearly ad-
neighborhood pruning is very effective; without it, the pro- vantageous in comparison to JA2]: compare the multi-
gram would be slower by roughly a factor of 4@r 1%  start-local-search data for move clddswith the SA results.
accuracy. (iii ) For att532, if an accuracy between 1 and 3 % is required,

The numerical experiments reported in this paper wergven multistart local search according to move classex-
performed using an HP K460 with 180 MHz PA8000 pro- tended by IPTLS can compete with SA: it is a bit better for
cessors, running under HP-UX 10.28ll CPU times given 7., <4 sec, and slightly worse for largegp. However, if
relate to one procesgoOur code was written iRORTRAN77 higher accuracies are desired, our SA program outperforms

the multistart-local-search-with-IPTLS code, which utilizes
B. Multistart-local-search results only move clas€a). A minor result of this comparison, not

Since heuristic procedures yield only approximate soluObvious from the figure since each point represents an aver-
tions, the truly important property is the relation between theage of 100 runs, concerns the variance of the final tour
mean quality of the solution, that is the deviation of the mearlength: the variance is considerably smaller for the multi-
tour length from the global optimum, and the required com-start local search according ta) extended by IPTLS than
puting time, 7cpy. Thus, in order to illustrate the perfor- for SA.
mance of IPT, we have investigated the influence of the ad- The advantage of “searching in parallef23,4Q is dem-
justable parameters on this relation for the 532 Northonstrated by Fig. 2. We compare the multistart-local-search-
American cities problentatt532, a standard example from
the TspLiBoslibrary [32]. These results are presented in Figs.
1-3. Moreover, to check for robustness and size dependence,
we have additionally studied five other instances from the
TSPLIBYS library, i.e., pcb442, rat783, fl1577, pr2392, and
fI3795 (the numerical part of the name denotes the number of
cities), considering a smaller number of parameter sets, see
Tables | and Il. Except for pr2392, the instances chosen are
the same as in19].

The performance of multistart local searches with move
classes(a) and (d), respectively, is shown in Fig. 1 for
att532. This graph contrasts results obtainedNg=1 with

102 T T T T M T

aL / 27686

, }—10'5

L L Il "
and without IPTLS, and includes SA dd(et. previous sub- 10! 3 102 3 10%
section for comparison. In particular, Fig. 1 shows the fol- Tepy [sec]
lowing. (i) For largercpy, i.e., for a large number of local g, 3. Effect of embedding IPTLS in thermal cycling: mean

searcheskK, considerable performance gains are reache@eviation from optimum tour length in dependence on computing
when the multistart local search is extended by IPTLS. Thigime for att532.X (»), thermal cycling without(with) IPTLS; A

is observed for move claga), as well as for move cladsl).  (+), multistart local search with IPTLS fdM,= 1 (10), included for
The speed gains are small whe&nis close to 1, but they comparison. In all cases, move class is considered. The lines,
rapidly increase withK. For the highesK considered, they full for multistart local search, and dashed for thermal cycling, are
amount to factors of roughly 100 and 30 for multi-start local guides to the eye only. For further details see caption of Fig. 1.
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TABLE I. “Parallel” multi-start local search with IPTLS: de- TABLE Il. Thermal cycling[19] extended by IPTLS: depen-
pendence of the tour length of the approximate solution, and of thelence of tour length, number of obtaining the best known tour
computing time on the number of searchi€sand on the archive length, and computing time on the archive size. For details see
size N, for six instances of thespLiggs library [32], where the  caption of Table I.
local-search algorithm is based on move cla@s For series of 20

runs, smallest and largest tour lengthg,, andL ., number of Problem N,  Lpyi Lmax  Mpest  Lmean  Tcpu
obtaining the best known tour lengtim,., mean tour length, pch442 1 50778 51024 10 50860 14
L meanr @nd computing time in secondsgp, are given. pcb44? 3 50778 50912 15 50800 33
Problem K N, L T pch442 5 50778 50912 19 50785 60
pcb442 50 1 50778 50976 1 50906 10 ggggg é gggg g;‘l‘g ‘11 g;é‘l‘ i?
pch442 500 1 50778 50907 15 50794 108 att532 5 27686 27704 16 27688 88
pcb442 500 10 50778 50795 18 50780 116
atts32 50 1 27717 27803 0 27755 12 ;Zggg é gggg ggfg é ggég gg
att532 500 1 27686 27737 8 27700 119 rat783 5 8806 8809 14 8806.6 112
att532 500 10 27686 27693 13 27688 135 )

flL577 1 22249 22262 2 22255 193
wm o sonowsownoooweow o BEL S BE LBE
rat783 500 10 8806 8826 3 8815 191 fl1577 5 22249 22253 16 22249.8 826
1577 50 1 22950 22308 0 22266 113 pr2392 1 378579 381023 0 380036 309
fl1577 500 1 22249 22254 8 22251 1110 pgggg 2 g;gégg g;gggg 2 g;gggg 2912470
fl1577 500 10 22249 22249 20 22249 1160 P

pr2392 8 378032 379000 1 378428 4700
pr2392 50 1 382178 385182 0 383675 139 Pr2392 12 378032 378655 7 378158 9380
pr2392 500 1 380776 383232 0 382255 1310
pr2392 500 10 379915 382980 0 381757 1790 f3795 28772 28774 19 28772.1 1520

1
fI3795 3 28772 28785 14 28774 3110
5

f3795 50 1 28774 28907 0 28815 781 fl3795 28772 28772 20 28772 6050
fl3795 500 1 28772 28783 12 28775 7410
13795 500 10 28772 28779 13 28773 8680

For a broader test of our code, we considered six symmet-
ric TSP instances taken from thespLIBYS library [32], in-
with-IPTLS results of Fig. 1 to data obtained with archives?(;Lrjdtlr?rgegeé\i’:fifgn?sa?gr?} :tZ?Ssglséez}'I;ﬁglgl apr:gsg:lctﬁi\r/isults
of 3 a_nd 10 states. For small ‘r]umbers_ (_)f Ioﬂcgl seardz‘hgs sizes,N,. These data confirm the above interpretations con-
there is almost no |nf'Iuence of parallellzmg, e, of using cerning the performance of our algorithrfi) For all in-
N> 1. However, aX increases, corresponding to increasinggiances considered but pr2392, the best known tour lengths
Tcpy, the “searching in parallel” strategy performs better [32] were reproduced. For pcb442, att532, rat783, and
and better. Moreover, up to some optimum archive size, th@1577, these values are the exact optima; fl3795 has not been
advantage increases also with. Above the optimum size, solved exactly yet. For pr2392, our bgshean result ex-
the performance slightly decreases with increadiggaddi-  ceeds the known exact optimum tour length by 0.6%).
tional runs for move clas$d) showed that, in the whole (ii) There is a considerable benefit of “searching in parallel”
accuracy region presented in Fig. 2, the performance deas illustrated by the results fé¢=500 with archive sizes 1
creases a bhit when the archive size increases from 10 to 3@nd 10, respectively.

The optimum archive size seems to rise slowly with Finally, the comparison of the data in Table | with those

The SA data, given in Fig. 1, are included into Fig. 2 also.given in Table | of{19] is instructive. However, this consid-

It is remarkable that for att532 multistart local search witheration is complicated by the use of a slightly improved local
IPTLS performed in paralleIN,=10) has roughly the same search code in the present work, which typically causes a
performance as our tuned SA program. However, the formespeed gain by a factor of 1.5. The comparison shows that
method has the considerable advantage to possess only omaeiltistart local search extended by IPTLS and performed
tuning parameter, which is, moreover, rather “uncritical.” “in parallel” reaches roughly the same efficiency as thermal

To ensure fairness of the comparison, we have impleeycling without IPTLS. In more detail, the former program is
mented the searching-in-parallel idea also in our SA proclearly faster for att532, fl1577, and fI3795, but slower for
gram: four runs, each taking one fourth of the available com+at783. For pcb442, both codes have roughly the same per-
puting time, are performed, and the best tour found in theséormance. The fact that there is no clear size dependence in
runs is taken as final result, d3,23,40. This performance this comparison is not surprising due to the large variety of
curve is presented in Fig. 2. There is a clear efficiency inthe features(occurrence of clusters of cities, degenera-
crease arising from this parallelism if an accuracy better thagies...) of the examples considered.

1% is desired. However, for att532, as Fig. 2 shows, even
this sophisticated SA algorithm is still far slower than the
multi-start local search with IPTLS concerning move class In order to study to what extent IPTLS improves thermal
(d). cycling, we have considered the same six symmetric TSP

C. Thermal-cycling results
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instances as above. Additionally, for comparison, we havdy roughly a factor of 4 for pcb442 and att532 if the accu-
performed thermal-cycling runs without IPTLS for att532 racy of our results foN,=3 is required. The performance
using the same local-search implementation as in thgap seems to shrink with increasing accuracy denjddd
thermal-cycling-with-IPTLS code. The results are presentedHowever, for fl3795, our code performs considerably better.
in Fig. 3 and in Table II. According to further calculations, this advantage arises pri-

Figure 3 illustrates the high efficiency of the thermal- marily from a larger robustness of our code, and not from
cycling approach: For att532, the performance of the originabetter scalabilityf44].
algorithm (without IPTLS is clearly better than that of Clearly, one should also attempt to make a comparison
multi-start local search with IPTLS faN,=1. It is compa- Wwith the state-of-the-art exact algorithms. For the Padberg-
rable to that of multi-start local search with IPTLS, applied Rinaldi 532 cities problem, the branch-and-cut program by
to archives of three states, cf. Fig. 2. In detail, original ther-Thienel and Nadeff, one of the presently fastest exact solu-
mal cycling is slower if low accuracy is desired, and better iftion codes, needs 16.5 min on a SPARC10 maclt,

a high accuracy has to be achieved. However, this ranking ighich corresponds to roughly 4 minutes computing time for
certainly TSP instance dependent. our CPU. Utilizing an archive of 12 states and cyclically

The efficiency is further improved by embedding IPTLS quenching according to stadd), we performed 100 runs.
in thermal cycling, see Fig. 3. For att532, there is a gain byour Monte Carlo approach, i.e., thermal cycling extended by
a factor of 2 to 3; it slightly increases with the accuracy|PTLS, reproduced the optimum tour length 27686 in 97 of
demanded. The comparison to “parallelized” multi-start lo- the 100 runs, requiring on the average 246 CPU seconds for
cal search with IPTLS yields a surprising result: For att532.0ne of them. In the other three cases, we obtained tours with
when move clas&d) is considered, the thermal-cycling-with- lengths 27693once or 27698(twice). However, when com-
IPTLS code is only slightly better than that program, which paring with exact algorithms for fl1577, the usefulness of the
is considerably simpler from the conceptional point of view proposed approach is more obvious: Here, using an archive
(only two adjustable parameters of eight states, we obtained the exact optimum in 19 of 20

For other TSP instances however, thermal cycling withruns, and in one case a tour of length 22253. Our Monte
IPTLS can be clearly more efficient than “parallelized” Carlo optimization requires 1390 CPU seconds on the aver-
multistart local search with IPTLS, compare Table Il to age, whereas 0CPU seconds were needed for the only
Table | with respect to rat783, pr2392, and fI3795. It is re-recently obtained exact solution of this problem on a DEC
markable that thermal cycling with IPTLS reproduced theAlphastation 4100 5/40(83].
best known tour lengths for all the problems considered Again, these comparisons should be interpreted with care:
within “reasonable” computing times. Moreover, comparing On the one hand, computing provably optimal solutions re-
Table Il with Table | from[19] shows that, for the instances quires much more effort than simply trying to find high-
pcbh442, att532, and rat783, the thermal-cycling-with-IPTLSquality solutions without any guarantee. However, on the
program is typically by a factor of 2 to 3 faster than the codeother hand, the required effort depends not only on the size
used in[19]. For fl1577, the acceleration amounts to a factorof the TSP instance, but also on its “character.” Thus,
of 5, and, for fl3795, it is even larger—roughly a factor of 10 fI3795, for which our code yields solutions of the best known
is obtained. tour length with high probability within “reasonable?cp,

It is definitely problematic to use results obtained on dif-has—to the best of our knowledge—not been solved exactly
ferent computing platforméardware, operating system, and yet.
programming languageas the basis of a judgment. Never-
theless, we now compare the performance of our thermal-
cycling-with-IPTLS procedure with that of four other ap-  We have presented an algorithm by means of which the
proaches, but the results should be considered with care. effectiveness of local search based heuristic combinatorial

It seems that our code is more efficient, for all instancesptimization procedures can be increased considerably. This
but pcb442, than the genetic-local-search algorithm prealgorithm, iterative partial transcription, is physically moti-
sented in[27]—a significantly improved version of the cor- vated: for a spin glass, it corresponds to searching for non-
responding winning algorithm of théirst International interacting clusters of spins with respect to which two states
Contest on Evolutionary Optimizatidd3,25. In detail, our  differ, and relaxing these excitations. Mathematically spo-
code is slightly slower for pcb442 and slightly faster for ken, the algorithm can be understood as a search in the sub-
rat783, it has clear advantages for att532, in particular whespace spanned by the differing components of two approxi-
high accuracies have to be achieved, and it is considerabiymate solutions of the optimization problem. It transcribes
faster for 11577 and fI3795. However, the approach presubsets of the components of the vector, representing one
sented in[27] has been optimized for solving large TSP in- approximate solution, by the related components of the other
stances by minimizing memory requirements; the distanceapproximate solution if the quality of the former solution can
between cities are computed rather than looked up in a die increased in this way. This process continues iteratively,
tance table stored in the main memory. For example, thaccounting for an increasing number of components.

V. CONCLUSIONS

genetic-local-search algorithm of R¢R27] needs 10 Mbyte For the traveling salesman problem, we have demon-
of main memory for solving fI3795 compared to 256 Mbytesstrated the feasibility of this approach by embedding it in the
used by the program presented here. multistart-local-search algorithm starting from random

In comparison to the iterated Lin-Kernighan approachstates, and, alternatively, in the thermal-cycling method. In
proposed by Johnson and McGeoch, the performance dfoth cases, a considerable acceleration of the computation of
which is illustrated by Table 16 ¢B], our program is slower high-quality approximate solutions was reached. For the TSP
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instances considered, these algorithms are far more efficient ACKNOWLEDGMENTS
than SA.

There are several areas for future research, suct)as
evaluating the performance of iterative partial transcription
for very large TSP instance§i) investigating its usefulness
in other combinatorial optimization problems, aiid) incor-
porating it in other heuristic combinatorial optimization pro-
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